Annex 1: studies 1-16 and variant details. Thirona Naicker et al. Systematic review on the known variants and genes associated with orofacial clefts in Africa. PAMJ - Clinical Medicine. 2022;9:31756. https://www.dinical-medicine.panafrican-med-journal.com/content/article/9/31756/full | N
0 | Refe
renc
e | Study
type | Locati
on
of
patien
ts | Gene | ournal.com/cont
Mutation:
cDNA
or SNP | Novel
/
Know
n | Cleft type | Mutation
type | ACMG | CADD
Score | Location
of
testing
lab | |--------|---|---|--|---|---|--|--|--|------------------------------|------------------------------------|----------------------------------| | 1 | Alade
et al.
(2020
) | Case-
control
study
(candidate
gene
analysis) | Ghana | IRF6 | c.107T>A
c.326A>C
c.1311A>T | Novel
Novel
Novel | Syndromic (VWS)
Syndromic (VWS)
Syndromic (VWS) | Missense
Missense
Missense | P
P
VUS | 29.3
23.6
25.5 | Iowa,
USA | | 2 | Mbuy
i-
Musa
nzayi
et al.
(2019
) | Family based case- control study (candidate gene, Chromoso mal microarray analysis) | Congo | IRF6 | chr1:209.872.
038-
210.246.107 | Novel | Syndromic (VWS) | Microdeletion | N/A | N/A | Louvain,
Belgium | | 3 | Butali
et al.
(2019
) | Case-
control
study
(GWAS) | Nigeria
,
Ghana,
Ethiopi
a | near
CTNNA2
SULT2A1
8q24
PAX7
VAX1
SOX5P1 | rs80004662
rs62529857
rs72728755
rs742071
rs6585429-A
rs12543318 | Novel
Novel
Known
Known
Known
Known | Non-syndromic (CP) Non-syndromic (CP) Non-syndromic (CL±P) Non-syndromic (CL±P) Non-syndromic (CL±P) Non-syndromic (CL±P) Non-syndromic (CL±P) | Intronic variant Intronic variant N/A Intronic variant Intronic variant Intronic variant | B
B
B
B
LB
B | N/A | Iowa,
USA | | 4 | Jaoua
di et
al.
(2018
) | Case-
parent
trios'
design
(whole
exome
sequencin
g) | Tunisia | ALPK3 | c.1531_1532d
elAA;
p.Lys511Argfs
*12 | Novel | Syndromic
(Paediatric
syndromic
cardiomyopathy) | Frameshift
Deletion | LP | N/A | Marseille,
France | | 5 | Gowa
ns et
al.
(2018 | Case-
control
study
(candidate
gene
analysis) | Ghana,
Ethiopi
a,
Nigeria | GREM1 | c.490C>T
c.182G>A | Novel
Novel | Non-syndromic (soft
palate)
Non-syndromic
(CL±P) | Missense
Missense | VUS
VUS | 22.9
22.9 | Iowa,
USA | | 6 | Eshet
e et
al.
(2018
) | Case-
control
study,
case-
parent
trios | Ghana,
Ethiopi
a,
Nigeria | GRHL3 | c.332delC
c.497C>A
c.1229A>G
c.1282A>C
c.1677C>A | Novel
Novel
Novel
Novel | Non-syndromic (CP)
Non-syndromic (CP)
Non-syndromic (CP)
Non-syndromic (CP)
Non-syndromic (CP) | Frameshift
Missense
Missense
Splice site
Nonsense | P
VUS
VUS
VUS
LP | N/A
23.6
29.1
19.31
40 | Iowa,
USA | | | | (candidate
gene
analysis) | | | | | | | | | | |--------|------------------------------------|--|------------------------------------|---|---|--|---|---|--|---|-------------------| | 7 | Gowa
ns et
al.
(2017
) | Family-
based
study
(candidate
gene and
segregatio
n
analyses) | Ghana,
Ethiopi
a,
Nigeria | IRF6 | c.175-2A>C
c.194G>T
c.205G>A
c.379+1G>T
c.554A>C
c.960G>C
c.1060+26C>T
Chr1:2099795
29A>T
c.263A>G
c.334C>G
c.380-
116T>A
c.749G>A
c.748C>T
c.945G>T | Novel
Novel
Novel
Novel
Novel
Novel
Known
Known
Known
Known
Known
Known | Non-syndromic (CL±P) Syndromic Non-syndromic (CL±P) Syndromic Non-syndromic (CL±P) Syndromic Non-syndromic (CL±P) Syndromic and non-syndromic Non-syndromic (CL±P) Non-syndromic (CL±P) Syndromic and non-syndromic Syndromic and non-syndromic Syndromic Syndromic Syndromic and non-syndromic Non-syndromic (CL±P) Non-syndromic (CL±P) Syndromic and non-syndromic Syndromic and non-syndromic Non-syndromic (CL±P) | Splice acceptor variant Missense Missense Splice donor variant Missense Missense Intronic TF binding site variant Missense Missense Intronic Missense Stop-gained Synonymous | P
P
P
VUS
LP
VUS
N/A
P
B
B
P
P
VUS | 33
26.2
32
34
21.7
25.7
4.61
17.37
25.8
17.11
2.09
29.3
38
18.74 | Iowa,
USA | | 8 | Gowa
ns et
al.
(2016
) | Case-
control
study
Family-
based
study
(candidate
genes
analyses,
meta-
analyses) | Ghana,
Ethiopi
a,
Nigeria | PAX7
8q24
VAX1
MSX1
TULP4
CRISPLD
2
NOG1
ARHGAP2
9 | Rs742071
Rs987525
Rs7078160
Rs115200552
Rs651333
Rs4783099
Rs17760296
c.967A>G
c.1277delAins
TA
c.1281+4A>G
c.511-
107T>C
c.341-30T>A
c.1227G>A | Novel
Novel | Non-syndromic (CL±P) Non-syndromic (CL±P) Non-syndromic (CL±P) Non-syndromic (CP) Non-syndromic (CP) Non-syndromic (CP) Non-syndromic (CP) Non-syndromic (CL) Non-syndromic (CL±P) (CL) Non-syndromic (CL) | Intronic variant N/A Intronic variant 3' UTR variant Intron variant 3' UTR variant Intron variant Missense Coding sequence variant Splice region variant/Introni c Intronic Intronic Synonymous | B
B
B
B
B
VUS
LP
VUS
VUS
VUS | 3.45
1.12
23.4
23.6
22.6
19.55
5.73
15.66 | Iowa,
USA | | 9 | Ratbi
et al.
(2014
) | Case-
parent
trios
(candidate
gene
analysis) | Morocc
o | IRF6 | c.250C>T | Known | Syndromic (PPS) | Missense | P | 28.5 | Rabat,
Morocco | | 1
0 | Butali
et al. | Family-
based
study | Nigeria
, | IRF6 | c.196A>T
c.551T>A
c.1061-2A>G | Novel
Novel
Known | Syndromic (VWS)
Syndromic (VWS)
Syndromic (VWS) | Stop-gained
Splice site | P
VUS
P | 38
NA
34 | Iowa,
USA | | | | | | | | | r | • | | | | |--------|--|--|------------------------------|----------------------|---|----------------------------------|--|--|--------------------|-----------------------------|---------------------------------| | | (2014 | (candidate
gene
analysis) | Ethiopi
a | | c.752T>C
c.690T>G
rs121434227
G>A | Known
Novel
Known | Syndromic (VWS)
Syndromic (VWS)
Syndromic (PPS) | Splice acceptor
variant
Missense
Missense
Missense | P
LP
P | 31
23.8
32 | | | 1 | Butali
et al.
(2014
) | Family-
based
study
(candidate | Nigeria
,
Ethiopi
a | ARHGAP2
9
PAX7 | c.2864G>A
c.2738C>A
c.1396G>A
c.952+2T>A | Known
Known
Known
Novel | Non-syndromic (CL±P) Non-syndromic (CL) Non-syndromic (CL) | Missense
Stop-gained
Missense
Splice donor | B
P
VUS
P | 15.95
39
22.7
28.3 | Iowa,
USA | | | | genes
analyses) | | PAA/ | c.1282G>A
c.493C>G | Novel | Non-syndromic (CL)
Non-syndromic (CL) | variant
Missense | VUS
VUS | 25.1 | | | | | | | MAFB | | | Non-syndromic (CP) | Missense | | | | | 1 2 | Figue iredo et al. (2014) | Case-
control
study,
Family-
based
study,
Replicatio
n study | Congo | 8q24
MID1 | Found no
association in
Africans | N/A Novel | Non-syndromic
(CL±P) | N/A Complex | N/A
VUS | N/A | Southern
California
, USA | | 3 | Miglio
re et
al.
(2013
) | Family-
based
study
(candidate
gene
analysis) | oon | | 1285del | | · | rearrangement | | N/A | Italy | | 1 4 | Weat
herle
y-
White
et al.
(2011
) | Cased-
control
study
(candidate
loci
analyses) | Kenya | 8q24 | Found no
association in
Africans | Known | Non-syndromic
(CL±P) | N/A | N/A | | Colorado,
USA | | 5 | Butali
et al.
(2011
) | Case-
control
study
Family-
based
study
(candidate
genes
analyses) | Nigeria | MSX1 | A34G/c.119C
>G | Known | Non-syndromic
(CL±P) | Missense | В | 13.64 | Iowa,
USA | | 1
6 | Chaa
bouni
et al.
(2005
) | Family
based
Linkage
study | Tunisia | TBX22 | c.358C>T | Novel | Syndromic (CP and ankyloglossia) | Intergenic
variant | LP | 25.4 | Tunis | ACMG: American college of medical genetics; CADD: combined annotation-dependent depletion; B: benign; LB: likely benign; LP: likely pathogenic; P: pathogenic; VUS: variant of unknown significance